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Abstract. A collection of electronically available data instances for the Quadratic Assignment Prob-
lem is described. For each instance, we provide detailed information, indicating whether or not the
problem is solved to optimality. If not, we supply the best known bounds for the problem. Moreover
we survey available software and describe recent dissertations related to the Quadratic Assignment
Problem.
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392 R. E. BURKARD ET AL.

2. Introduction

The Quadratic Assignment Problem (QAP) has remained one of the great chal-
lenges in combinatorial optimization. It is still considered a computationally non-
trivial task to solve modest size problems, say of size n = 20: The QAPLIB was
first published in 1991, in order to provide a unified testbed for QAP, accessible
to the scientific community. It consisted of virtually all QAP instances that were
accessible to us at that time. Due to the continuing demand for these instances,
and the strong feedback from many researchers, we provided a major update in
1994, which was also accessible through anonymous ftp. In this update we also
included many new problem instances, generated by several researchers for their
own testing purposes. Moreover, we included a list of current champions, i.e. best
known feasible solutions, and best lower bounds.

The current update reflects on one hand the big changes in electronic communi-
cation. It has become a World Wide Web site, the QAPLIB Home Page. The online
version will be updated on a regular basis and also contains most of the currently
best known permutations. On the other hand, we feel the update was necessary, due
to the increased research activities around the QAP, carried out in the last years.
Therefore we also include a short list of dissertations concerning QAP, which were
written in the last few years.

3. Problem Instances

In this section we describe in some detail all the problem instances currently
included in the QAPLIB. We have removed all the instances of size n < 12,
because these can be solved quite efficiently by current state of the art programs.
On the other hand, we included several larger instances, the largest one of size
n = 256:

The instances are listed in alphabetical order by the names of their authors or
contributors. We shortly characterize the examples by indicating their generation.
All the instances in the current version are pure quadratic. If not stated otherwise
the examples are symmetric.

The format of the problem data whose filenames have extension “dat” is

n

A

B

where n is the size of the instance, and A and B are either flow or distance matrix.
This corresponds to a QAP of the form

min
p

nX

i=1

nX

j=1

aijbp(i);p(j)

where p is a permutation.
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QAPLIB – A QUADRATIC ASSIGNMENT PROBLEM LIBRARY 393

We quote the filename under which it is stored in the library and report the
size of the problem. Then the objective function value of the best known feasible
solution is given. In parentheses we indicate whether this solution is provably
optimal. Otherwise we indicate, by which heuristic the solution was found. The
heuristics that are currently considered are
� genetic hybrids: (GEN) [13] and (GEN-2) [29],
� a greedy randomized adaptive search procedure: (GRASP) [25],
� simulated annealing: (SIM-1) [7] and (SIM-2) [41], and
� tabu search: reactive tabu search (Re-TS) [1], robust tabu search (Ro-TS)

[39, 40], and strict tabu search (S-TS) [37].
If available we provide permutations corresponding to the feasible solutions in the
QAPLIB Home Page. The files for these solutions have extension “sln” and their
format is

n sol

p

where n gives the size of the instance, sol is the objective function value and p a
corresponding permutation, i.e.

sol =
nX

i=1

nX

j=1

aijbp(i);p(j):

For problems solved to optimality, we enclose the optimal permutation. Oth-
erwise we include the currently best known lower bounds. We also give explicit
reference for who solved hard instances of size n � 16 first. The lower bounds
given in the tables are
� the elimination bound: (ELI) [15],
� the Gilmore–Lawler bound: (GLB) [14, 22],
� an interior point based linear programming bound: (IPLP) [33]
� a semidefinite programming bound: (SDP) [18, 20], and
� a triangle decomposition bound: (TDB) [19].

When lower bounds are included we also give the relative gap between best
feasible solution and best known lower bound in percent, i.e. gap = (solution �
bound)=(solution) � 100 %. We also note that GLB can be calculated routinely for
all instances of the QAPLIB. The bound ELI is only valid for symmetric instances.
It can also be computed efficiently for all symmetric instances, but its computation
time is (by a constant factor) higher than the time to compute GLB. The bound TDB
can be applied only to instances where the distance matrix has a metric structure. It
can be calculated efficiently for all metric instances in the QAPLIB. Finally, IPLP
and SDP produce in general very strong bounds, but the computational effort by
far outgrows the computation times for the other bounds. Currently, these bounds
can not be considered efficient for problems of sizes larger than, say n = 30.
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394 R. E. BURKARD ET AL.

R. E. BURKARD AND J. OFFERMANN [6]

The data of the first matrix correspond to the typing-time of an average stenotypist,
while the second matrix describes the frequency of pairs of letters in different
languages taken over 100,000 pairs for examples a-f and over 187,778 pairs for
examples g-h. (Note that the solutions of the latter instances are not scaled for a
flow matrix of 100,000 pairs any more.) One also distinguishes between two types
of typewriter keyboards. The instances are asymmetric.

name n feas. solution bound gap

Bur26a 26 5426670 (GRASP) 5334208 (IPLP) 1:71%
Bur26b 26 3817852 (GRASP) 3736954 (IPLP) 2:12%
Bur26c 26 5426795 (GRASP) 5359110 (IPLP) 1:25%
Bur26d 26 3821225 (GRASP) 3705831 (IPLP) 3:03%
Bur26e 26 5386879 (GRASP) 5315311 (IPLP) 1:33%
Bur26f 26 3782044 (GRASP) 3712627 (IPLP) 1:84%
Bur26g 26 10117172 (GRASP) 10047627 (IPLP) 0:69%
Bur26h 26 7098658 (GRASP) 7036448 (IPLP) 0:88%

N. CHRISTOFIDES AND E. BENAVENT [9]

One matrix is the adjacency matrix of a weighted tree the other that of a complete
graph.

name n feas. solution permutation

Chr12a 12 9552 (OPT) p
�
= (7; 5; 12; 2; 1; 3; 9; 11; 10; 6; 8; 4)

Chr12b 12 9742 (OPT) p
�
= (5; 7; 1; 10; 11; 3; 4; 2; 9; 6; 12; 8)

Chr12c 12 11156 (OPT) p
�
= (7; 5; 1; 3; 10; 4; 8; 6; 9; 11; 2; 12)

Chr15a 15 9896 (OPT) p
�
= (5; 10; 8; 13; 12; 11; 14; 2; 4; 6; 7; 15; 3; 1; 9)

Chr15b 15 7990 (OPT) p
�
= (4; 13; 15; 1; 9; 2; 5; 12; 6; 14; 7; 3; 10; 11; 8)

Chr15c 15 9504 (OPT) p
�
= (13; 2; 5; 7; 8; 1; 14; 6; 4; 3; 15; 9; 12; 11; 10)

Chr18a 18 11098 (OPT) p
�
= (3; 13; 6; 4; 18; 12; 10; 5; 1; 11; 8; 7; 17; 14; 9; 16; 15; 2)

Chr18b 18 1534 (OPT) p
�
= (1; 2; 4; 3; 5; 6; 8; 9; 7; 12; 10; 11; 13; 14; 16; 15; 17; 18)

Chr20a 20 2192 (OPT) p
�
= (3; 20; 7; 18; 9; 12; 19; 4; 10; 11; 1; 6; 15; 8; 2; 5; 14; 16; 13; 17)

Chr20b 20 2298 (OPT) p
�
= (20; 3; 9; 7; 1; 12; 16; 6; 8; 14; 10; 4; 5; 13; 17; 2; 18; 11; 19; 15)

Chr20c 20 14142 (OPT) p
�
= (12; 6; 9; 2; 10; 11; 3; 4; 15; 18; 7; 13; 16; 5; 14; 17; 19; 1; 8; 20)

Chr22a 22 6156 (OPT) p
�
= (15; 2; 21; 8; 16; 1; 7; 18; 14; 13; 5; 17; 6; 11; 3; 4; 20; 19; 9; 22; 10; 12)

Chr22b 22 6194 (OPT) p
�
= (10; 19; 3; 1; 20; 2; 6; 4; 7; 8; 17; 12; 11; 15; 21; 13; 9; 5; 22; 14; 18; 16)

Chr25a 25 3796 (OPT) p
�
= (25; 12; 5; 3; 18; 4; 16; 8; 20; 10; 14; 6; 15; 23; 24; 19; 13; 1; 21; 11; 17;

2; 22; 7; 9)

A. N. ELSHAFEI [11]

The data describe the distances of 19 different facilities of a hospital and the flow
of patients between those.

name n feas. solution permutation

Els19 19 17212548 (OPT)[27] p
�
= (9; 10; 7; 18; 14; 19; 13; 17; 6; 11; 4; 5; 12; 8; 15; 16; 1; 2; 3)
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B. ESCHERMANN AND H. J. WUNDERLICH [12]

These examples stem from an application in computer science, from the testing
of self-testable sequential circuits. The amount of additional hardware for the
testing should be minimized. (Note that problem instance Esc16f was removed
from QAPLIB.)

name n feas. solution permutation/bound gap

Esc16a 16 68 (OPT)[10] p
�
= (2; 14; 10; 16; 5; 3; 7; 8; 4; 6; 12; 11; 15; 13; 9; 1) �

Esc16b 16 292 (OPT)[10] p
�
= (6; 3; 7; 5; 13; 1; 15; 2; 4; 11; 9; 14; 10; 12; 8; 16) �

Esc16c 16 160 (OPT)[10] p
�
= (11; 14; 10; 16; 12; 8; 9; 3; 13; 6; 5; 7; 15; 2; 1; 4) �

Esc16d 16 16 (OPT)[10] p
�
= (14; 2; 12; 5; 6; 16; 8; 10; 3; 9; 13; 7; 11; 15; 4; 1) �

Esc16e 16 28 (OPT)[10] p
�
= (16; 7; 8; 15; 9; 12; 14; 10; 11; 2; 6; 5; 13; 4; 3; 1) �

Esc16g 16 26 (OPT)[10] p
�
= (8; 11; 9; 12; 15; 16; 14; 10; 7; 6; 2; 5; 13; 4; 3; 1) �

Esc16h 16 996 (OPT)[10] p
�
= (13; 9; 10; 15; 3; 11; 4; 16; 12; 7; 8; 5; 6; 2; 1; 14) �

Esc16i 16 14 (OPT)[10] p
�
= (13; 9; 11; 3; 7; 5; 6; 2; 1; 15; 4; 14; 12; 10; 8; 16) �

Esc16j 16 8 (OPT)[10] p
�
= (8; 3; 16; 14; 2; 12; 10; 6; 9; 5; 13; 11; 4; 7; 15; 1) �

Esc32a 32 130 (Ro-TS) 35 (GLB) 73:08%
Esc32b 32 168 (Ro-TS) 96 (GLB) 42:86%
Esc32c 32 642 (SIM-1) 464 (ELI) 27:73%
Esc32d 32 200 (Ro-TS) 106 (GLB) 47:00%
Esc32e 32 2 (OPT)[2] p

�
= (1; 2; 5; 6; 8; 16; 13; 19; 9; 32; 7; 22; 24; 20; 4; 12; 3; 17;

29; 21; 11; 25; 27; 18; 30; 31; 23; 28; 14; 15; 26; 10) �

Esc32f 32 2 (OPT)[2] p
�
= (1; 2; 5; 6; 8; 16; 10; 7; 9; 28; 30; 4; 32; 31; 22; 12; 3; 17;

26; 18; 13; 25; 29; 21; 23; 24; 19; 20; 14; 15; 27; 11) �

Esc32g 32 6 (SIM-1) 0 (GLB) 100:00%
Esc32h 32 438 (Ro-TS) 257 (GLB) 41:33%
Esc64a 64 116 (SIM-1) 47 (GLB) 59:49%
Esc128 128 64 (GRASP) 2 (GLB) 96:86%

S. W. HADLEY, F. RENDL AND H. WOLKOWICZ [15]

The first matrix represents Manhattan distances of a connected cellular complex in
the plane while the entries in the flow matrix are drawn uniformly from the interval
[1; n].

name n feas. solution permutation

Had12 12 1652 (OPT) p
�
= (3; 10; 11; 2; 12; 5; 6; 7; 8; 1; 4; 9)

Had14 14 2724 (OPT) p
�
= (8; 13; 10; 5; 12; 11; 2; 14; 3; 6; 7; 1; 9; 4)

Had16 16 3720 (OPT)[16] p
�
= (9; 4; 16; 1; 7; 8; 6; 14; 15; 11; 12; 10; 5; 3; 2; 13)

Had18 18 5358 (OPT)[2] p
�
= (8; 15; 16; 6; 7; 18; 14; 11; 1; 10; 12; 5; 3; 13; 2; 17; 9; 4)

Had20 20 6922 (OPT)[2] p
�
= (8; 15; 16; 14; 19; 6; 7; 17; 1; 12; 10; 11; 5; 20; 2; 3; 4; 9; 18; 13)

J. KRARUP AND P. M. PRUZAN [21]

The instances contain real world data and were used to plan the Klinikum Regens-
burg in Germany.

name n feas. solution bound gap

Kra30a 30 88900 (S-TS) 76003 (IPLP) 14:51%
Kra30b 30 91420 (Ro-TS) 76752 (IPLP) 16:05%
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Y. LI AND P. M. PARDALOS [24]

These instances come from problem generators described in [24]. The generators
provide asymmetric instances with known optimal solutions.

name n feas. solution

Lipa20a 20 3683 (OPT)
Lipa20b 20 27076 (OPT)
Lipa30a 30 13178 (OPT)
Lipa30b 30 151426 (OPT)
Lipa40a 40 31538 (OPT)
Lipa40b 40 476581 (OPT)
Lipa50a 50 62093 (OPT)
Lipa50b 50 1210244 (OPT)
Lipa60a 60 107218 (OPT)
Lipa60b 60 2520135 (OPT)
Lipa70a 70 169755 (OPT)
Lipa70b 70 4603200 (OPT)
Lipa80a 80 253195 (OPT)
Lipa80b 80 7783962 (OPT)
Lipa90a 90 360630 (OPT)
Lipa90b 90 12490441 (OPT)

C. E. NUGENT, T. E. VOLLMANN AND J. RUML [28]

The following problem instances are probably the most frequently used. The dis-
tance matrix contains Manhattan distances of rectangular grids. The instances of
size n 2 f14; 16; 17; 18; 21; 22; 24; 25g were constructed out of the larger ones by
deleting certain rows and columns, see Clausen and Perregaard [10].

name n feas. solution permutation/bound gap

Nug12 12 578 (OPT) p
�
= (12; 7; 9; 3; 4; 8; 11; 1; 5; 6; 10; 2) �

Nug14 14 1014 (OPT) p
�
= (9; 8; 13; 2; 1; 11; 7; 14; 3; 4; 12; 5; 6; 10) �

Nug15 15 1150 (OPT) p
�
= (1; 2; 13; 8; 9; 4; 3; 14; 7; 11; 10; 15; 6; 5; 12) �

Nug16a 16 1610 (OPT)[10] p
�
= (9; 14; 2; 15; 16; 3; 10; 12; 8; 11; 6; 5; 7; 1; 4; 13) �

Nug16b 16 1240 (OPT)[10] p
�
= (16; 12; 13; 8; 4; 2; 9; 11; 15; 10; 7; 3; 14; 6; 1; 5) �

Nug17 17 1732 (OPT)[10] p
�
= (16; 15; 2; 14; 9; 11; 8; 12; 10; 3; 4; 1; 7; 6; 13; 17; 5) �

Nug18 18 1930 (OPT)[10] p
�
= (10; 3; 14; 2; 18; 6; 7; 12; 15; 4; 5; 1; 11; 8; 17; 13; 9; 16) �

Nug20 20 2570 (OPT)[10] p
�
= (18; 14; 10; 3; 9; 4; 2; 12; 11; 16; 19; 15; 20; 8; 13; 17; 5;

7; 1; 6) �

Nug21 21 2438 (OPT)[2] p
�
= (4; 21; 3; 9; 13; 2; 5; 14; 18; 11; 16; 10; 6; 15; 20; 19; 8; 7;

1; 12; 17) �

Nug22 22 3596 (OPT)[2] p
�
= (2; 21; 9; 10; 7; 3; 1; 19; 8; 20; 17; 5; 13; 6; 12; 16; 11; 22;

18; 4; 14; 15) �

Nug24 24 3488 (SIM-1) 3251 (TDB) 6:80%
Nug25 25 3744 (SIM-1) 3486 (TDB) 6:89%
Nug30 30 6124 (S-TS) 5772 (TDB) 5:75%
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C. ROUCAIROL [35]

The entries of the matrices are chosen from the interval [1; 100].

name n feas. solution permutation

Rou12 12 235528 (OPT) p
�
= (6; 5; 11; 9; 2; 8; 3; 1; 12; 7; 4; 10)

Rou15 15 354210 (OPT) p
�
= (12; 6; 8; 13; 5; 3; 15; 2; 7; 1; 9; 10; 4; 14; 11)

Rou20 20 725522 (OPT)[2] p
�
= (1; 19; 2; 14; 10; 16; 11; 20; 9; 5; 7; 4; 8; 18; 15; 3; 12; 17; 13; 6)

M. SCRIABIN AND R. C. VERGIN [36]

The distances of these problems are rectangular.

name n feas. solution permutation

Scr12 12 31410 (OPT) p
�
= (8; 6; 3; 2; 10; 1; 5; 9; 4; 7; 12; 11)

Scr15 15 51140 (OPT) p
�
= (15; 7; 11; 8; 1; 4; 3; 2; 12; 6; 13; 5; 14; 10; 9)

Scr20 20 110030 (OPT)[27] p
�
= (20; 7; 12; 6; 4; 8; 3; 2; 14; 11; 18; 9; 19; 15; 16; 17; 13; 5; 10; 1)

J. SKORIN-KAPOV [37]

The distances of these problems are rectangular and the entries of the flow matrices
are pseudorandom numbers.

name n feas. solution bound gap

Sko42 42 15812 (Ro-TS) 14934 (TDB) 5:56%
Sko49 49 23386 (Ro-TS) 22004 (TDB) 5:91%
Sko56 56 34458 (Ro-TS) 32610 (TDB) 5:37%
Sko64 64 48498 (Ro-TS) 45736 (TDB) 5:70%
Sko72 72 66256 (Ro-TS) 62691 (TDB) 5:38%
Sko81 81 90998 (GEN) 86072 (TDB) 5:41%
Sko90 90 115534 (Ro-TS) 108493 (TDB) 6:10%
Sko100a 100 152002 (GEN) 142668 (TDB) 6:14%
Sko100b 100 153890 (GEN) 143872 (TDB) 6:51%
Sko100c 100 147862 (GEN) 139402 (TDB) 5:73%
Sko100d 100 149576 (GEN) 139898 (TDB) 6:47%
Sko100e 100 149150 (GEN) 140105 (TDB) 6:07%
Sko100f 100 149036 (GEN) 139452 (TDB) 6:43%

L. STEINBERG [38]

The three instances model the backboard wiring problem. The distances in the first
one are Manhattan, in the second squared Euclidean, and in the third one Euclidean
distances.
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name n feas. solution bound qap

Ste36a 36 9526 (Ro-TS) 7124 (GLB) 25:22%
Ste36b 36 15852 (S-TS) 8653 (GLB) 45:42%
Ste36c 36 8239:11 (Ro-TS) 6393:63 (GLB) 22:40%

É. D. TAILLARD [39, 40]

The instances Taixxa are uniformly generated and were proposed in [39]. The other
problems were introduced in [40]. Problems Taixxb are asymmetric and randomly
generated. Instances Taixxc occur in the generation of grey patterns.

name n feas. solution permutation/bound gap

Tai12a 12 224416 (OPT) p
�
= (8; 1; 6; 2; 11; 10; 3; 5; 9; 7; 12; 4) �

Tai12b 12 39464925 (OPT) p
�
= (9; 4; 6; 3; 11; 7; 12; 2; 8; 10; 1; 5) �

Tai15a 15 388214 (OPT) p
�
= (5; 10; 4; 13; 2; 9; 1; 11; 12; 14; 7; 15; 3; 8; 6) �

Tai15b 15 51765268 (OPT) p
�
= (1; 9; 4; 6; 8; 15; 7; 11; 3; 5; 2; 14; 13; 12; 10) �

Tai17a 17 491812 (OPT)[2] p
�
= (12; 2; 6; 7; 4; 8; 14; 5; 11; 3; 16; 13; 17; 9; 1;

10; 15) �

Tai20a 20 703482 (OPT)[2] p
�
= (10; 9; 12; 20; 19; 3; 14; 6; 17; 11; 5; 7; 15; 16;

18; 2; 4; 8; 13; 1) �

Tai20b 20 122455319 (Ro-TS) 14857089 (GLB) 87:87%
Tai25a 25 1167256 (Ro-TS) 962417 (GLB) 17:55%
Tai25b 25 344355646 (Ro-TS) 51401950 (GLB) 85:08%
Tai30a 30 1818146 (Ro-TS) 1504688 (GLB) 17:25%
Tai30b 30 637117113 (Ro-TS) 40947945 (GLB) 93:58%
Tai35a 35 2422002 (Ro-TS) 1951207 (GLB) 19:44%
Tai35b 35 283315445 (Ro-TS) 32611838 (GLB) 88:49%
Tai40a 40 3139370 (Re-TS) 2492850 (GLB) 20:60%
Tai40b 40 637250948 (Ro-TS) 46143753 (GLB) 92:77%
Tai50a 50 4941410 (GEN) 3854359 (GLB) 22:00%
Tai50b 50 458821517 (Ro-TS) 40296004 (GLB) 91:23%
Tai60a 60 7208572 (Ro-TS) 5555095 (GLB) 22:94%
Tai60b 60 608215054 (Ro-TS) 50113782 (GLB) 91:77%
Tai64c 64 1855928 (Ro-TS) 896398 (ELI) 51:71%
Tai80a 80 13557864 (Ro-TS) 10329674 (GLB) 23:82%
Tai80b 80 818415043 (Ro-TS) 89169828 (GLB) 89:11%
Tai100a 100 21125314 (Re-TS) 15824355 (GLB) 25:10%
Tai100b 100 1185996137 (Ro-TS) 174687926 (GLB) 86:28%
Tai150b 150 499348972 (Ro-TS) 63007151 (GLB) 87:39%
Tai256c 256 44919020 (GEN-2) 41291996 (ELI) 8:08%

U. W. THONEMANN AND A. BÖLTE [41]

The distances of these instances are rectangular.

name n feas. solution bound gap

Tho30 30 149936 (SIM-2) 136447 (TDB) 9:00%
Tho40 40 240516 (SIM-2) 214218 (TDB) 10:94%
Tho150 150 8134030 (GEN) 7620628 (TDB) 6:32%
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M. R. WILHELM AND T. L. WARD [42]

The distances of these problems are rectangular.

name n feas. solution bound gap

Wil50 50 48816 (SIM-2) 47098 (TDB) 3:52%
Wil100 100 273038 (GEN) 263909 (TDB) 3:35%

4. Surveys and Dissertations Concerning QAP since 1990

SURVEYS

R. E. Burkard and E. Çela provide the most recent survey on QAP [4]. Their paper
is an annotated bibliography on all aspects of the QAP. Another recent survey on
QAP is due to P. M. Pardalos, F. Rendl and H. Wolkowicz [30]. It appeared in 1994
in a proceedings book of the DIMACS workshop on QAP edited by P. M. Pardalos
and H. Wolkowicz [31]. R. E. Burkard reviews the QAP in the context of facility
location in the survey paper [3].

DISSERTATIONS

The following list of dissertations considering the quadratic assignment problem
shows that there is still a broad interest in this difficult combinatorial optimiza-
tion problem. Even though there has not been substantial improvement regarding
the solvability of larger problem instances, these dissertations contain many ideas
which are certainly a strong foundation for successful future work on QAP.

E. Çela [8] investigated the computational complexity of specially structured
quadratic assignment problems. Moreover, she considered a generalization of QAP,
the so called biquadratic assignment problem.

T. A. Johnson [17] introduced solution procedures based on linear programming.
The linear formulation derived in her thesis theoretically dominates alternate linear
formulations for QAP.

S. E. Karisch [18] presented nonlinear approaches for QAP. These provide the
currently strongest lower bounds for problems instances whose distance matrix
contains distances of a rectangular grid and for smaller sized general problems.

Y. Li [23] introduced beside other ideas lower bounding techniques based on reduc-
tions, GRASP and a problem generator for QAP.

F. Malucelli [26] proposed a lower bounding technique for QAP based on a refor-
mulation scheme and implemented it in a branch and bound code. Some new
applications of QAP in the field of transportation were also presented.
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T. Mautor [27] focused on parallel implementations and exploited the metric struc-
ture of the Nugent instances to reduce the branching tree considerably.

M. Rijal [34] investigated structural properties of the QAP polytope. The starting
point is the quadric Boolean polytope.

5. Fortran Codes for QAP

The following Fortran codes are available through the QAPLIB Home Page on
WWW. We intend to extend this list of codes, and would like to include also
further software, contributed by other researchers.

Unless otherwise stated, the following programs are selfcontained, i.e. compil-
ing them should result in an executable main program. The input convention is the
same for all files. The main program expects a QAP instance (in the format of the
QAPLIB) from the primary input.

qapbb.f
The Branch and Bound code from [5] solves QAPs to optimality. The code qapbb.f
is a modified version of it (a linear term can be included) and is quite efficient
on problems of sizes n � 15. Running it on larger problems may result in unpre-
dictably long computation times. Currently the code is dimensioned to handle
problems of sizes at most n � 33: A typical call might look like

bbqap < nug12.dat

qapglb.f
The Gilmore–Lawler bound can be computed quite efficiently for all instances of
the QAPLIB. Currently the code is dimensioned for problems with n � 256. It
uses some of the subroutines from [5] in modified form.

qapeli.f
This routine computes the elimination bound. It is applicable only if the problem
is symmetric. It is also dimensioned for n � 256.

GRASP
These are the GRASP heuristics of [25, 32]. The code is obtainable from the home
page of M. G. C. Resende (URL:
ftp://netlib.att.com/netlib/att/math/resende/home.html),
and consists of compressed tar-files.

qapsim.f
This is the code from [7], and produces heuristic solutions for symmetric QAPs of
dimension n � 256, based on simulated annealing.

Li–Pardalos generator
The problem generator of Y. Li and P. M. Pardalos [24] can be obtained by sending
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an E-Mail to coap@math.ufl.edu and putting “send 92006" in the body of
the mail message.

6. Conclusion

Even though the research activities around the QAP have significantly increased
during the last years, we feel that the QAP is still a serious challenge for scientists.
There are very efficient heuristics available, that find in acceptable computation
times seemingly good solutions. To prove their optimality, there are a variety of
bounds available. Unfortunately, it seems to be the case that the bounds with low
computational cost, like GLB or ELI are not strong enough on larger problems, to
prove optimality with limited enumeration.

The more advanced, and only recently investigated polyhedral and semidefinite
relaxations seem to be stronger, but their current implementations are prohibitive
for even moderately sized problems. Their advantage lies also in the fact, that dual
information is available, which can be used to guide the branching process.

A breakthrough to solve larger QAP instances to optimality can in our opinion
only be expected, if these stronger bounds can also be implemented to run much
faster than the current implementations. It will be interesting to follow the progress
on QAP in the near future.
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