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Abstract. A collection of electronically available datainstances for the Quadratic Assignment Prob-
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2. Introduction

The Quadratic Assignment Problem (QAP) has remained one of the great chal-
lenges in combinatorial optimization. It is still considered a computationally non-
trivial task to solve modest size problems, say of sizen = 20. The QAPLIB was
first published in 1991, in order to provide a unified testbed for QAP, accessible
to the scientific community. It consisted of virtually all QAP instances that were
accessible to us at that time. Due to the continuing demand for these instances,
and the strong feedback from many researchers, we provided a major update in
1994, which was also accessible through anonymous ftp. In this update we also
included many new problem instances, generated by several researchers for their
own testing purposes. Moreover, we included a list of current champions, i.e. best
known feasible solutions, and best lower bounds.

The current update refl ects on one hand the big changesin el ectronic communi-
cation. It has become aWorld Wide Web site, the QAPLIB Home Page. The online
version will be updated on aregular basis and also contains most of the currently
best known permutations. On the other hand, wefeel the update was necessary, due
to the increased research activities around the QAP, carried out in the last years.
Therefore we also include ashort list of dissertations concerning QAP, which were
written in the last few years.

3. Problem Instances

In this section we describe in some detail al the problem instances currently
included in the QAPLIB. We have removed all the instances of sizen < 12,
because these can be solved quite efficiently by current state of the art programs.
On the other hand, we included several larger instances, the largest one of size
n = 256.

The instances are listed in aphabetical order by the names of their authors or
contributors. We shortly characterize the examples by indicating their generation.
All the instances in the current version are pure quadratic. If not stated otherwise
the examples are symmetric.

The format of the problem data whose filenames have extension “dat” is

n

A
B

wheren isthe size of the instance, and A and B are either flow or distance matrix.
This corresponds to a QAP of the form

n n
mind > aiibyi )
i=1j=1

where p is a permutation.
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We quote the filename under which it is stored in the library and report the
size of the problem. Then the objective function value of the best known feasible
solution is given. In parentheses we indicate whether this solution is provably
optimal. Otherwise we indicate, by which heuristic the solution was found. The
heuristics that are currently considered are

e genetic hybrids: (GEN) [13] and (GEN-2) [29],

¢ agreedy randomized adaptive search procedure: (GRASP) [25],

e simulated annealing: (SIM-1) [7] and (SIM-2) [41], and

e tabu search: reactive tabu search (Re-TS) [1], robust tabu search (Ro-TS)

[39, 40], and strict tabu search (S-TS) [37].

If available we provide permutations corresponding to the feasible solutions in the
QAPLIB Home Page. The files for these solutions have extension “sin” and their
format is

n sol
p

where n gives the size of the instance, sol is the objective function value and p a
corresponding permutation, i.e.

sol =D aijby(i) p(s)-

i=1j=1

For problems solved to optimality, we enclose the optimal permutation. Oth-
erwise we include the currently best known lower bounds. We also give explicit
reference for who solved hard instances of size n > 16 first. The lower bounds
givenin the tables are

¢ the elimination bound: (EL1) [15],

e the Gilmore-Lawler bound: (GLB) [14, 22],

e aninterior point based linear programming bound: (IPLP) [33]

¢ asemidefinite programming bound: (SDP) [18, 20], and

¢ atriangle decomposition bound: (TDB) [19].
When lower bounds are included we also give the relative gap between best
feasible solution and best known lower bound in percent, i.e. gap = (solution —
bound) / (solution) x 100 %. We also note that GL B can be calculated routinely for
al instancesof the QAPLIB. Thebound ELI isonly valid for symmetric instances.
It can also be computed efficiently for all symmetric instances, but its computation
timeis(by aconstant factor) higher thanthetimeto compute GLB. Thebound TDB
can be applied only to instances where the distance matrix hasametric structure. It
can be calculated efficiently for all metric instancesin the QAPLIB. Finally, IPLP
and SDP produce in general very strong bounds, but the computational effort by
far outgrows the computation times for the other bounds. Currently, these bounds
can not be considered efficient for problems of sizeslarger than, say n = 30.
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R. E. BURKARD AND J. OFFERMANN [6]

The data of thefirst matrix correspond to the typing-time of an average stenotypist,
while the second matrix describes the frequency of pairs of letters in different
languages taken over 100,000 pairs for examples a-f and over 187,778 pairs for
examples g-h. (Note that the solutions of the latter instances are not scaled for a
flow matrix of 100,000 pairs any more.) One also distinguishes between two types
of typewriter keyboards. The instances are asymmetric.

[name [ n] feas solution | bound | gap |

Bur26a| 26| 5426670 (GRASP)| 5334208 (IPLP)|L.71%
Bur26b|26| 3817852 (GRASP)| 3736954 (IPLP)|2.12%
Bur26c | 26| 5426795 (GRASP)| 5359110 (IPLP)|1.25%
Bur26d|26| 3821225 (GRASP)| 3705831 (IPLP)|3.03%
Bur26e|26| 5386879 (GRASP)| 5315311 (IPLP)|1.33%
Bur26f | 26| 3782044 (GRASP)| 3712627 (IPLP)|1.84%
Bur26g| 26| 10117172 (GRASP)|10047627 (IPLP)|0.69%
Bur26h|26| 7098658 (GRASP)| 7036448 (IPLP)|0.88%

N. CHRISTOFIDES AND E. BENAVENT [9]

One matrix is the adjacency matrix of aweighted tree the other that of a complete
graph.

[name | n] feas. solution | permutation

Chriza[12] 9552 (OPT)[p* = (7,5,12, 2,1, 3,9, 11, 10, 6, 8, 4)

Chri2b|12| 9742 (OPT)|p* = (5,7,1,10,11,3,4,2,9,6,12,8)

Chri2c|12|11156 (OPT)|p* = (7,5,1,3,10,4,8,6,9,11,2,12)

Chrisa|15| 9896 (OPT)|p* = (5,10,8,13,12,11,14,2,4,6,7,15,3,1,9)

Chrisb|15| 7990 (OPT)|p* = (4,13,15,1,9,2,5,12,6,14,7,3, 10, 11, 8)

Chrisc|15| 9504 (OPT)|p* = (13,2,5,7,8,1,14,6,4,3,15,9, 12, 11, 10)

Chri8a|18|11098 (OPT)|p* = (3,13,6,4,18,12,10,5,1,11,8,7,17, 14,9, 16, 15, 2)

Chrisb|18| 1534 (OPT)|p* = (1,2,4,3,5,6,8,9,7,12,10, 11, 13, 14, 16, 15, 17, 18)

Chr20a|20| 2192 (OPT)|p* = (3,20,7,18,9,12, 19,4, 10,11, 1, 6, 15,8, 2, 5, 14, 16, 13, 17)

Chr20b|20| 2298 (OPT)|p* = (20,3,9,7,1,12,16,6,8, 14,10, 4,5, 13,17, 2, 18, 11, 19, 15)

Chr20c | 20| 14142 (OPT)|p* = (12,6,9,2, 10,11, 3,4, 15,18, 7, 13, 16, 5, 14, 17, 19, 1, 8, 20)

Chr22a|22| 6156 (OPT)|p* = (15,2,21,8,16,1,7,18,14,13,5,17, 6,11, 3,4, 20, 19, 9, 22, 10, 12)

Chr22b|22| 6194 (OPT)|p* = (10,19,3,1,20,2,6,4,7,8,17,12, 11,15, 21,13, 9, 5, 22, 14, 18, 16)

Chr25a|25| 3796 (OPT)|p* = (25,12,5,3,18, 4,16, 8, 20, 10, 14, 6, 15, 23, 24,19, 13, 1, 21, 11, 17,
2,22,7,9)

A.N. ELSHAFEI [11]

The data describe the distances of 19 different facilities of a hospital and the flow
of patients between those.

[name| n|  fess solution | permutation |
[EISI9[ 1917212548 (OPT)[27] [p” — (9,10,7,18,14,19,13,17,6,11,4,5,12,8,15,16,1,2,3) |
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B. ESCHERMANN AND H. J. WUNDERLICH [12]

These examples stem from an application in computer science, from the testing
of self-testable sequentia circuits. The amount of additional hardware for the
testing should be minimized. (Note that problem instance Esc16f was removed
from QAPLIB.)

[name [ n] feas solution | permutation/bound | g |

Escl6a| 16] 68 (OPT)[10]|p” = (2, 14,10, 16,5,3, 7, 8,4, 6,12, 11, 15, 13,9, 1) -
Escléb| 16|292 (OPT)[10]|p* = (6,3,7,5,13,1,15,2,4, 11,9, 14, 10, 12, 8, 16) -
Escléc| 16|160 (OPT)[10]|p* = (11,14,10,16,12,8,9,3,13,6,5,7,15,2,1,4) -
Escled| 16| 16 (OPT)[10]|p* = (14,2,12,5,6,16,8,10,3,9,13,7,11, 15,4, 1) -
Esclée| 16| 28 (OPT)[10]|p* = (16,7,8,15,9,12,14,10,11,2,6,5,13, 4,3, 1) -
Esclég| 16| 26 (OPT)[10]|p* = (8,11,9,12, 15,16, 14,10,7,6,2,5,13,4,3,1) -
Escléh| 16|996 (OPT)[10]|p* = (13,9,10,15,3,11, 4,16,12,7,8,5,6, 2, 1, 14) -
Escl6i | 16| 14 (OPT)[10]|p* = (13,9,11,3,7,5,6,2,1, 15,4, 14, 12, 10, 8, 16) -
Escléj | 16| 8 (OPT)[10]|p* = (8,3,16,14,2,12,10,6,9,5,13, 11,4, 7,15, 1) -
Esc32a| 32/130 (Ro-TS) | 35 (GLB) 73.08%
Esc32b| 32|168 (Ro-TS) | 96 (GLB) 42.86%
Esc32c| 32|642 (SIM-1) |464 (ELI) 27.73%
Esc32d| 32|200 (Ro-TS) |106 (GLB) 47.00%

Esc32e| 32| 2 (OPT)[2 |p* = (1,2,5,6,8,16,13,19,9,32,7, 22, 24, 20,4, 12, 3,17,
29,21, 11, 25, 27,18, 30, 31, 23, 28, 14, 15, 26, 10) -

Esc32f | 32| 2 (OPT)[2 |p* = (1,2,5,6,8,16,10,7,9,28,30,4,32,31,22,12,3,17,
26,18, 13,25, 29, 21, 23, 24, 19, 20, 14, 15, 27, 11) -

Esc32g| 32| 6 (SIM-1) 0 (GLB) 100.00%

Esc32h| 32/438 (Ro-TS) |257 (GLB) 41.33%
Esc6da| 64116 (SIM-1) | 47 (GLB) 59.49%
Escl28|128| 64 (GRASP) | 2 (GLB) 96.86%

S. W. HADLEY, F. RENDL AND H. WoLKowiICz [15]

Thefirst matrix represents Manhattan distances of aconnected cellular complex in
the planewhile the entriesin the flow matrix are drawn uniformly from theinterval
[1,n].

[name | n| feas. solution | permutation

Had12|12]1652 (OPT)  |p* = (3,10,11,2,12,5,6,7,8,1,4,9)

Hadl14|14|2724 (OPT) |p* = (8,13,10,5,12,11,2,14,3,6,7,1,9,4)

Had16 | 16| 3720 (OPT)[16]|p* = (9,4,16,1,7,8,6, 14,15, 11, 12, 10,5, 3, 2, 13)
Had18|18|5358 (OPT)[2] |p* = (8,15,16,6,7,18,14,11, 1,10,12, 5,3, 13, 2, 17, 9, 4)
Had20|20|6922 (OPT)[2] |p* = (8,15,16,14,19,6,7,17,1,12,10, 11,5, 20,2, 3, 4,9, 18, 13)

J. KRARUP AND P. M. PRUZAN [21]

Theinstances contain real world data and were used to plan the Klinikum Regens-
burg in Germany.

[name [ n] feas.solution [  bound | gap |

Kra30a| 30| 88900 (S-TS) | 76003 (IPLP)|14.51%
Kra30b|30|91420 (Ro-TS)|76752 (IPLP)|16.05%
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Y. LI AND P. M. PARDALOS [24]

These instances come from problem generators described in [24]. The generators
provide asymmetric instances with known optimal solutions.

[name | n]| feas solution |

Lipa20a| 20 3683 (OPT)
Lipa20b|20| 27076 (OPT)
Lipa30a|30| 13178 (OPT)
Lipa30ob|30| 151426 (OPT)
Lipad0a|40| 31538 (OPT)
LipadOb|40| 476581 (OPT)
Lipa50a|50| 62093 (OPT)
Lipa50b|50| 1210244 (OPT)
Lipa60a|60| 107218 (OPT)
LipaB0b| 60| 2520135 (OPT)
Lipa70a|70| 169755 (OPT)
Lipa70b| 70| 4603200 (OPT)
Lipa80a|80| 253195 (OPT)
Lipa80b|80| 7783962 (OPT)
Lipad0a|90| 360630 (OPT)
Lipag0b| 90| 12490441 (OPT)

C. E. NUGENT, T. E. VOLLMANN AND J. RumL [28]

The following problem instances are probably the most frequently used. The dis-
tance matrix contains Manhattan distances of rectangular grids. The instances of
sizen € {14, 16, 17,18, 21, 22, 24, 25} were constructed out of the larger ones by
deleting certain rows and columns, see Clausen and Perregaard [10].

[name | n] feas. solution | permutation/bound | g |
Nugl2 [12] 578 (OPT) |p* = (12,7,9,3,4,8, 11, 1,5, 6, 10, 2) -
Nugld |14|1014 (OPT) |p* = (9,8,13,2,1,11,7,14,3,4,12,5,6,10) -
Nugl5 |15|1150 (OPT) |p* = (1,2,13,8,9,4,3,14,7,11, 10,15, 6,5, 12) -
Nugl6a|16|1610 (OPT)[10] |p* = (9,14, 2,15,16,3,10,12,8,11,6,5,7,1,4,13) -
Nugl6b| 16 | 1240 (OPT)[10] |p* = (16,12,13,8,4,2,9,11,15,10,7,3,14,6,1,5) —
Nugl? |17|1732 (OPT)[10] |p* = (16,15,2,14,9,11,8,12,10,3,4,1,7,6,13,17,5) -
Nugl8 |18(1930 (OPT)[10] |p* = (10,3,14,2,18,6,7,12,15,4,5,1,11, 8,17,13, 9, 16) —
Nug20 |20|2570 (OPT)[10] |p* = (18,14,10,3,9,4,2,12, 11, 16,19, 15, 20, 8, 13, 17, 5,

7,1,6) -
Nug2l |21|2438 (OPT)[2] |p* = (4,21,3,9,13,2,5,14, 18,11, 16, 10, 6, 15, 20,19, 8, 7,

1,12,17) -
Nug22 |22|3596 (OPT)[2] |p* = (2,21,9,10,7,3,1,19,8,20,17,5,13,6,12,16, 11, 22,

18,4, 14, 15) -
Nug24 |24|3488 (SIM-1) 3251 (TDB) 6.80%
Nug25 |25|3744 (SIM-1) 6 (TDB) 6.89%
Nug30 [30|6124 (STS) 5772 (TDB) 5.75%
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C. RoucalroL [35]

The entries of the matrices are chosen from the interval [1, 100].

[name | n]| fess solution | permutation |
Roul2[12[235528 (OPT) |p* = (6,5,11,9,2,8,3,1,12, 7, 4,10)

Roul5|15|354210 (OPT) |p* = (12,6,8,13,5,3,15,2,7,1,9, 10, 4, 14, 11)

Rou20| 20| 725522 (OPT)[2]|p* = (1,19, 2, 14,10, 16, 11, 20,9,5, 7, 4,8, 18, 15, 3, 12, 17, 13, 6)

M. SCRIABIN AND R. C. VERGIN [36]

The distances of these problems are rectangular.

[name ] n| feas solution | permutation |
Scri2[12] 31410 (OPT)  |p” = (8,6,3,2,10,1,5,9,4,7, 12, 11)

Scri5|15| 51140 (OPT)  |p* = (15,7,11,8,1,4,3,2,12,6,13,5, 14, 10, 9)
Scr20{20{110030 (OPT)[27] |p* = (20,7,12,6,4,8,3,2, 14,11, 18,9, 19, 15, 16, 17, 13,5, 10, 1)

J. SKORIN-KAPOV [37]

Thedistances of these problems are rectangular and the entries of the flow matrices
are pseudorandom numbers.

[nane | n| fess solution | bound | gap |
Sko42 42] 15812 (Ro-TS)| 14934 (TDB)|[5.56%
Sko49 49| 23386 (Ro-TS)| 22004 (TDB)|5.91%
Sko56 56| 34458 (Ro-TS)| 32610 (TDB) |5.37%
Sko64 64| 48498 (Ro-TS)| 45736 (TDB) |5.70%
Sko72 | 72| 66256 (Ro-TS)| 62691 (TDB) |5.38%
Sko81 81| 90998 (GEN) 86072 (TDB) [5.41%
Sko90 | 90[115534 (Ro-TS)|108493 (TDB) |6.10%
Sko100a | 100152002 (GEN) |142668 (TDB) |6.14%
Sko100b | 100153890 (GEN) |143872 (TDB) [6.51%
Sko100c | 100| 147862 (GEN) |139402 (TDB) |5.73%
Sko100d | 100| 149576 (GEN) |139898 (TDB) |6.47%
Sko100e | 100149150 (GEN) |140105 (TDB) [6.07%
Skol00f |100|149036 (GEN) |139452 (TDB) |6.43%

L. STEINBERG [38]

Thethree instances model the backboard wiring problem. The distancesin the first
one are Manhattan, in the second squared Euclidean, and in the third one Euclidean
distances.
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[name | n]| feas solution | bound | gap |
Sle36a]36] 9526 (Ro-1S)| 7124 (GLB)|25.22%
Ste36b (36| 15852 (S-T9) 8653 (GLB)|45.42%
Ste36¢ | 36]8239.11 (Ro-TS)|6393.63 (GLB)|22.40%

E. D. TAILLARD [39, 40]

Theinstances Taizzaare uniformly generated and were proposed in[39]. The other
problemswere introduced in [40]. Problems Taizzb are asymmetric and randomly
generated. Instances Taizzc occur in the generation of grey patterns.

[name | n] feas. solution | permutation/bound | gap |
Talza | 12 224416 (OPT) |p* = (8,1,6,2,11,10,3,5,9, 7,12, ) -
Tal2o | 12| 39464925 (OPT) |p* =(9,4,6,3,11,7,12,2,8,10,1,5) -
Teil5a | 15 388214 (OPT) |p* = (5,10,4,13,2,9,1,11,12,14,7, 15,3, 8, 6) -
Tal5b | 15| 51765268 (OPT) |p* = (1,9,4,6,8,15,7,11,3,5,2, 14,13, 12, 10) -
Tel7a | 17 491812 (OPT)[2]|p* = (12,2,6,7,4,8,14,5,11, 3, 16,13,17,9, 1,

10, 15) -
Tei20a | 20 703482 (OPT)[2]|p* = (10,9, 12,20, 19, 3,14, 6,17, 11, 5, 7, 15, 16,

18,2,4,8,13,1) -
Tai20b | 20| 122455319 (Ro-TS) | 14857089 (GLB) 87.87%
Tai25a | 25 1167256 (Ro-TS) 962417 (GLB) 17.55%
Tai25b | 25| 344355646 (Ro-TS) | 51401950 (GLB) 85.08%
Tai30a | 30 1818146 (Ro-TS) 1504688 (GLB) 17.25%
Tai30b | 30| 637117113 (Ro-TS) | 40947945 (GLB) 93.58%
Tai35a | 35 2422002 (Ro-TS) 1951207 (GLB) 19.44%
Tai35b | 35| 283315445 (Ro-TS) | 32611838 (GLB) 88.49%
Tai40a | 40 3139370 (Re-TS) 2492850 (GLB) 20.60%
Tai40b | 40| 637250948 (Ro-TS) | 46143753 (GLB) 92.77%
Tai50a | 50 4941410 (GEN) 3854359 (GLB) 22.00%
Tai50b | 50| 458821517 (Ro-TS) | 40296004 (GLB) 91.23%
Tai60a | 60 7208572 (Ro-TS) 5555095 (GLB) 22.94%
Tai60b | 60| 608215054 (Ro-TS) | 50113782 (GLB) 91.77%
Ta64dc | 64 1855928 (Ro-TS) 896398 (ELI) 51.71%
Tai80a | 80| 13557864 (Ro-TS) | 10329674 (GLB) 23.82%
Tai80b | 80| 818415043 (Ro-TS) | 89169828 (GLB) 89.11%
Tail00a|100| 21125314 (Re-TS) | 15824355 (GLB) 25.10%
Tai100b | 100 | 1185996137 (Ro-TS) | 174687926 (GLB) 86.28%
Tai150b| 150| 499348972 (Ro-TS) | 63007151 (GLB) 87.39%%
Tai256c | 256| 44919020 (GEN-2) | 41291996 (ELI) 8.08%

U. W. THONEMANN AND A. BOLTE [41]

The distances of these instances are rectangular.

[name [ n] feas solution | bound | gap |
Tho30 | 30| 149936 (SIM-2)| 136447 (TDB)| 9.00%
Tho40 | 40| 240516 (SIM-2)| 214218 (TDB)|10.94%
Tho150| 150|8134030 (GEN) |7620628 (TDB)| 6.32%
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M. R. WILHELM AND T. L. WARD [42]

The distances of these problems are rectangular.

[name [ n] feas solution | bound | gap |

Wil50 | 50| 48816 (SIM-2)| 47098 (TDB)|3.52%
Wil100(100|273038 (GEN) |263909 (TDB) |3.35%

4. Surveysand Dissertations Concerning QAP since 1990
SURVEYS

R. E. Burkard and E. Cela provide the most recent survey on QAP [4]. Their paper
is an annotated bibliography on all aspects of the QAP. Another recent survey on
QAPisdueto P. M. Pardalos, F. Rendl and H. Wolkowicz [30]. It appeared in 1994
in aproceedings book of the DIMACS workshop on QAP edited by P. M. Pardalos
and H. Wolkowicz [31]. R. E. Burkard reviews the QAP in the context of facility
location in the survey paper [3].

DISSERTATIONS

The following list of dissertations considering the quadratic assignment problem
shows that there is till a broad interest in this difficult combinatorial optimiza-
tion problem. Even though there has not been substantial improvement regarding
the solvability of larger problem instances, these dissertations contain many ideas
which are certainly a strong foundation for successful future work on QAP.

E. Cela [8] investigated the computational complexity of specially structured
guadratic assignment problems. Moreover, she considered ageneralization of QAP,
the so called biquadratic assignment problem.

T. A. Johnson [17] introduced solution procedures based on linear programming.
Thelinear formulation derived in her thesistheoretically dominates alternate linear
formulations for QAP.

S. E. Karisch [18] presented nonlinear approaches for QAP. These provide the
currently strongest lower bounds for problems instances whose distance matrix
contains distances of arectangular grid and for smaller sized general problems.

Y. Li [23] introduced beside other ideas|ower bounding techniquesbased on reduc-
tions, GRASP and a problem generator for QAP.

F. Malucelli [26] proposed a lower bounding technique for QAP based on arefor-
mulation scheme and implemented it in a branch and bound code. Some new
applications of QAP in the field of transportation were also presented.
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T. Mautor [27] focused on parallel implementations and exploited the metric struc-
ture of the Nugent instances to reduce the branching tree considerably.

M. Rijal [34] investigated structural properties of the QAP polytope. The starting
point is the quadric Boolean polytope.

5. Fortran Codesfor QAP

The following Fortran codes are available through the QAPLIB Home Page on
WWW. We intend to extend this list of codes, and would like to include also
further software, contributed by other researchers.

Unless otherwise stated, the following programs are selfcontained, i.e. compil-
ing them should result in an executable main program. The input convention isthe
same for al files. The main program expects a QAP instance (in the format of the
QAPLIB) from the primary input.

gapbb.f

The Branch and Bound code from [5] solves QAPsto optimality. The code gapbb.f
is a modified version of it (a linear term can be included) and is quite efficient
on problems of sizesn < 15. Running it on larger problems may result in unpre-
dictably long computation times. Currently the code is dimensioned to handle
problems of sizesat most n < 33. A typical call might look like

bbgap < nugl2. dat

gapglb.f
The Gilmore-Lawler bound can be computed quite efficiently for all instances of

the QAPLIB. Currently the code is dimensioned for problems with n < 256. It
uses some of the subroutines from [5] in modified form.

gapeli.f
This routine computes the elimination bound. It is applicable only if the problem
issymmetric. It is also dimensioned for n < 256.

GRASP

These are the GRASP heuristics of [25, 32]. The code is obtainable from the home
page of M. G. C. Resende (URL.:
ftp://netlib.att.confnetlib/att/mth/resende/ home. htm),
and consists of compressed tar-files.

gapsim.f
Thisisthe code from [7], and produces heuristic solutions for symmetric QAPs of
dimension n < 256, based on simulated annealing.

Li—Pardalos generator
The problem generator of Y. Li and P. M. Pardal os[24] can be obtained by sending
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an E-Mail to coap@rat h. uf | . edu and putting “send 92006" in the body of
the mail message.

6. Conclusion

Even though the research activities around the QAP have significantly increased
during the last years, wefeel that the QAP is still a serious challengefor scientists.
There are very efficient heuristics available, that find in acceptable computation
times seemingly good solutions. To prove their optimality, there are a variety of
bounds available. Unfortunately, it seems to be the case that the bounds with low
computational cost, like GLB or ELI are not strong enough on larger problems, to
prove optimality with limited enumeration.

The more advanced, and only recently investigated polyhedral and semidefinite
relaxations seem to be stronger, but their current implementations are prohibitive
for even moderately sized problems. Their advantagelies also in the fact, that dual
information is available, which can be used to guide the branching process.

A breakthrough to solve larger QAP instances to optimality can in our opinion
only be expected, if these stronger bounds can also be implemented to run much
faster than the current implementations. It will be interesting to follow the progress
on QAP in the near future.
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